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Abstract
The energy-density components @9 and 70 of the canonical and of the metrical energy-
momentum tensors @'k and T for a statical field of vector mesons have opposite signa-
tures: @0y = H = -~T0y = —[. From this property some relativistic and field-theoretical
theorems can be deduced in an elementary way.
The Lagrangian of a vector meson field is (cf: Wentzel, 1949; Hund, 1954)
=1 i 1 i 1 i
L= §FycF + 3k 4,47 = J(F o, F O +5F,, P2 +k2414) (1)
with i=0, 1, 2, 3; »= 1, 2, 3 and with the field tensor
Fiszk,i‘“Ai,k’ Fuv=AV,u — Ay F0v=Au,0 ~A(),u (1a)

For a statical vector field we have

A’=A4,=0 (¥=1,2,3), A®=d,=pX"), ¢ =0
@)

With (2) the Lagrangian (1) becomes the negative definite expression
= 30w k6%  (9p=A40) ©)
The canonical energy tensor to the Lagrangian (1) is
O = (AL/dAL) ALy — 814 L = Fiyp,d + Fild, | — 81,1
O = Fd e — nucL 4
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314 HANS-JURGEN TREDER
and the metrical energy tensor defined by Hilbert (1924) is
Tix = QN=8)[6(V-gL)[8g™*] = FyFy! + k24 Ax — nyc L (5)
In (4) and (5)
1 = diagonal (—1, +1, +1, +1)

is the Minkowski tensor.
For the statical field (2) the spacelike components of ®;; and T, become
identical:

Oy = Typ=—0upw t+ %5;111(%)\%}\ +k2y?) W, v=1,2,3) (6a)
and the space-time components of both tensors vanish:
Tuo=0u9=09, =0 (6b)

But the timelike energy component of ;4 is given by the negative definite
expression!

Ogo = ~3(wwpw Tk2¢)=L <0, ©% =H=-L (7
and the energy component of 7' is given by the positive definite expression
Too = Py *+ k2‘p2 +L= %(30,,)90,,, + k2<p2) =-L=>0 (8

Therefore, for a statical vector field the energy densities defined by the canonical
and by the metrical tensor have opposite signatures:?

Too =~ = —L = 3(pp, + k2¢?) )

This point makes clear an old problem discussed by Laue (1953): In a bimetrical
theory of gravitation the energy density f{, of a statical field becomes positive

! The Hamiltonian to the Lagrangian (1) (cf. Wentzel, 1949) follows from

G0 = —©g0 = H = (3L/3A4%,0) Al — L

=FOVFou+FO%44, - L

= L(FOFyy, — SFHVFy, — K24iAD + FO%4,,

= "%”vﬂv +aydoy — %F}WF“V - '%szfAi
with the canonical momentum

mi=0L/0A%0 =F = _Foi=Fig,  mo=0
2 With (2) the equations (6)-(9) are valid for a field 4; with the Lagrangian of Wentzel
(1949):
L* =5l iduin'® + k24540, w*=—dio

and for Fermi’s version of electrodynamics (cf. Wentzel, (1949), too.



SIGNATURES OF ENERGY DENSITIES OF VECTOR FIELDS 315

detinite in spite of the fact, that this gravitation field describes an attractive
interaction. Laue has defined the energy tensor density {{; of the bimetrical
gravitation field in analogy to Einstein’s general relativistic affine tensor

i = 3[0L0%mn N8mnx — 6% L] (10)

with the Lagrangian % for the gravitation field g;. From (10) as the energy
density of a statical field the positive definite expression (cf. Laue, 1953)

foo = —3800Z >0 (11

results, because for statical g;; the Lagrange density £ is positive definite, and
itis ggo < 0. & > 0 means that the statical gravitation interaction gives attrac-
tive forces.

However, Laue’s tensor T ;; is a canonical energy tensor, and the-canonical
energy density 8,4 of a statical vector field (2) is negative definite

@QQ=L<O

because this L is a Lagrangian of a repulsive interaction.
For source-free vector fields, that is, for a closed field theory, with the field
equations

SLISAI=Fl,+k24;=0  (»Ai,;=0 fork#0) (12)

the connection between the metrical and the canonical tensor is given by the
divergence of a superpotential {cf. Hund 1954). According to (12) we have

Tix = O + Hy'y (13)
with the superpotential
Hipr= —Hyp; = Ax Fyy (132)
and with the conservation laws
Tl i=0% ;=Hily;=0 (13b)
For a time-independent source-free field A; we have with 4; o = 0
Tixe = O + Higew (14)
and the space integrals over these T3 can be written

[Twadx= [ @y adx+ [ Hy,ds” (=1,2,3) (15)
v, v, 5V,

according to the Gaussian theorem. Therefore, for time-independent fields 4;
without sources and without singularities the volume integrals over the metrical
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and the canonical tensor are equivalent, if V4 is the space x® = const; it is ac-
cording to (12):

[ Tpasx= [ epdix (16)

0 ..
x” =const x® =const

From (16) and (9) it follows, that for a source-free statical vector field (2)
the energy integral must vanish:

f TOO d3x = f @00 d3x = — f @00 d3x
x° =const x% =const x 9 =const
=— [ La%x=0 (17)
x°® = const

and because of the definity of the statical L this function must vanish itself:
—2L = 90 K20 = 0 (18)

Equation (18) implies well-known potential-theoretical theorems for statical
fields without sources and singularities. Equation (18) gives in the case of
vector mesons (with £ # 0)

gp,Vch,i:O and 80=O_)Tik=®ik=0 (193)

and for the electrostatical field (with & = 0)
O =95 = 0> T = Oy =0 (19b)

That means, a statical source-free field of vector mesons vanishes, 4; = 0, and
a source-free electrostatical field has a vanishing field strength, Fy; = 0.3

Generally, in a nonclosed theory of vector fields (cf. Hund, 1954) a source-
density current s; defined by

5[4/5141 = .F;'i,l + szi =8 (20)
exists with the charge density —s® = 54 = p. Then the connection between the
canonical energy tensor (4) and the metrical energy tensor (5) is given by

Tix = O + Hylsy — Ax F'y
= O + (A F)a + AkFiy,
= Oy + Hylyp + Ags; 21
3 That the source-free stationary field yy vanishes, too, follows from this theorem in a
simple way: The time-independent field equations (12) are
Al + k24 = (A - kD4i=0

But, the same equation (A — k2)p = 0 defines the source-free potential 40 = —¢in the
statical case for which we have proved that ¢ = 0 is the only solution without singularities.
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For a time-independent vector field with sources the integral relations

f Tir d3x= f O d3x + f Apgs; d3x
x°=const x%=const x®=const
follow. For a statical vector field (2) we have s, = 0, and the equations (6a)

and {6b) are valid. But, for the energy-density components (9) the integral
relation

[ Tew=— [ ©hpdix= [ ©gddx+ [ ewai

x°® =const X" = const x® =const x° =const
(23)

results from (22). Equation (23) determines the interaction energy of a statical
vector field to

1 1
J‘Too d3x= 5 J(W:V@av +k2p?) d3x =_[ 0%, d3x = 3 fw dBx  (24)
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